

What Does "Chemical Reactivity" Mean?

"Chemical Reactivity" means surface radicals that can interact with oxygen and water.

Potential sources of surface radicals on in situ lunar dust:

- Mechanical effects grinding, and breaking
- Radiation effects Full Spectrum UV

Solar wind protons (1keV)

GCR protons (~1GeV)

SPE protons (15-250MeV)

Hydroxyl Radical Generation on Mineral Surfaces

So the question becomes how do we measure OH[•]?

Excitation at 325 nm; Emission at 425 nm

Instrumentation

Results

Results

Conclusions

- The trend suggests that we are seeing increasing hydroxyl radical generation following UV exposure.
- The trend also suggests that between 30 and 60 minutes of UV exposure we see a plateau.

Future Directions

- To introduce a motion that causes the gardening of the soil during the irradiation procedure.
- To use a magnesium fluoride window to separate the hydrogen discharge from the sample chamber allowing us to determine if it is the UV that is causing the increased reactivity.

Acknowledgements

LADTAG Research Working Group

- Jon Rask
- David Loftus
- Clara McCrossin
- Russell Kerschmann
- William Wallace
- Larry Taylor
- David McKay
- Kim Kuhlman
- Bonnie Cooper
- Antony Jeevarajan

National Institute of Occupational Safety and Health (NIOSH)

NASA HQ (OCHMO)

UV System Details

- The vacuum ultraviolet radiation ~10.2 eV used to ionize the sample was generated by a microwave-powered, flowing hydrogen, discharge lamp.
- The lamp consists of a glass discharge tube mounted in a tunable McCarroll cavity that is powered by a 50–120 W microwave generator ~Opthos Instruments MPG 4M.
- The lamp, equipped with a removable MgF2 window, was mounted on one port of the cryogenic chamber during photolysis. With a 10% H2/helium mixture in a low-pressure discharge, much of the most energetic VUV radiation is practically monochromatic in the Lyman-a line ~121.6 nm.

